first_img Facebook News NETWORK ERRORCannot Contact ServerRELOAD YOUR SCREEN OR TRY SELECTING A DIFFERENT VIDEO Aug 21, 2018 – 3:13 pm Tank On Bringing The Feeling Back Into R&B Exclusive: Tank Talks Bringing The Feeling Back Into R&B Email Twitter The soulful singer/songwriter discusses the importance of putting passion behind the musicAna YglesiasGRAMMYs Aug 21, 2018 – 3:13 pm GRAMMY-nominated R&B singer-songwriter Tank has been crafting hits since 2001, so he definitely knows a thing or two about putting heart and soul into music. His most recent hit, and most popular song to date, “When We,” has spent the last year on the charts, proving that the R&B sound is ever-evolving. Tank On Bringing The Feeling Back Into R&B exclusive-tank-talks-bringing-feeling-back-rb We caught up with the artist backstage at Essence Festival 2018 in New Orleans to hear him share how he and others are changing the game by making “R&B music that feels like something.” Despite the almost two decades he has spent contributing to the R&B scene, he knows he has more to accomplish.”As long as you’re putting in the work, at some point…there will be a harvest,” Tank says, sharing his advice for younger artists.Catching Up On Music News Powered By The Recording Academy Just Got Easier. Have A Google Home Device? “Talk To GRAMMYs”last_img read more

first_imgThe mole is stuck on Mars. NASA/JPL-Caltech NASA’s Mars InSight lander has been a star on the Red Planet. It touched down in November and has since snapped lovely landscapes, deployed a seismometer and unleashed a burrowing heat probe known as the “mole.” Everything was going great until the mole got stuck under the surface in February.NASA and the German Aerospace Center (DLR), whose engineers designed the heat probe (also known as the Heat and Physical Properties Package, or HP3), have come up with an initial plan to help crack the mystery of why the mole isn’t moving.NASA and DLR both issued updates on the project on Thursday. One big question is whether the mole hit a single rock or came up against a gravel layer. There’s also some concern the probe itself or its cable could be hung up on something inside the housing that’s supposed to protect it. InSight studies Mars NASA’s InSight Mars lander got stuck between a rock in a hard place NASA InSight lander catches a shadowy eclipse on Mars NASA InSight lander rocks its journey to Mars: A view in pictures NASA Space 1 22 Photoscenter_img Share your voice Tags Comment Sci-Tech The mole works by hammering down into the ground to measure the heat coming from the interior of Mars. The InSight team now plans to conduct a hammering test lasting up to 15 minutes later this month. The lander’s seismometer will listen to the mole and hopefully pick up clues about what stopped its progress.InSight will also train its camera on the mole’s above-ground support structure to look for movement. The mole is designed to burrow down as far as 16 feet (5 meters), but only made it a matter of inches before stopping.If the InSight team can solve the puzzle of what’s hiding there under the surface of Mars, it may be able to revive the mole’s mission to explore the hidden inner life of the Red Planet.last_img read more

first_imgIn the conventional production of lime from limestone, fossil fuels are burned during the decarbonation process, resulting in a carbon dioxide byproduct. In the STEP process, solar thermal energy is used to heat the limestone as well as assist in electrolysis, producing a different chemical reaction with no carbon dioxide byproduct. Image credit: Licht, et al. ©2012 The Royal Society of Chemistry Explore further Researcher develops carbon dioxide-free method of producing iron Jumping on this opportunity for improvement, a team of researchers from George Washington University in Ashburn, Virginia, has developed a method for cement production that releases zero CO2 emissions. In addition, the scientists estimate that the new production process will be cheaper than the existing process used in the cement industry.In their study published in a recent issue of Chemical Communications, the scientists describe the process as the Solar Thermal Electrochemical Production of cement, or STEP cement. (The team previously used a similar STEP process for carbon capture, with the potential for decreasing CO2 levels in the atmosphere to pre-industrial levels.) As the scientists explain, 60-70% of CO2 emissions during cement production occurs during the conversion of limestone into lime. This conversion involves decarbonation, or removing the carbon atom and two oxygen atoms in limestone (CaCO3) to obtain lime (CaO) with CO2 as the byproduct. The remainder of the emissions comes from burning fossil fuels, such as coal, to heat the kiln reactors that produce the heat required for this decarbonation process.The STEP process addresses both issues, starting by replacing the fossil fuel heat source with solar thermal energy. The solar heat is not only applied directly to melt the limestone, it also provides heat to assist in the electrolysis of the limestone. In electrolysis, a current applied to the limestone changes the chemical reaction so that instead of separating into lime and CO2, the limestone separates into lime and some other combination of carbon and oxygen atoms, depending on the temperature of the reaction. When electrolyzed below 800°C, the molten limestone forms lime, C, and O2. When electrolyzed above 800°C, the product is lime, CO, and ½O2. Citation: Solar thermal process produces cement with no carbon dioxide emissions (2012, April 10) retrieved 18 August 2019 from https://phys.org/news/2012-04-solar-thermal-cement-carbon-dioxide.html “Electrolysis changes the product of the reaction of the limestone as it is converted to lime,” coauthor Stuart Licht, a chemistry professor at George Washington University, told Phys.org. “Rather than producing carbon dioxide, it reduces the carbon dioxide (adds electrons) and produces only oxygen and graphite (which can be readily stored as solid carbon) or CO for fuels, plastics or pharmaceuticals. This is accomplished at low energy and high throughput.”When separated, the carbon and oxygen atoms no longer pose the threat to the atmosphere that they do as CO2. As Licht explained, the carbon monoxide byproduct in the higher temperature reaction can be used in other industries, such as to produce fuels, purify nickel, and form plastics and other hydrocarbons. Plus, the carbon monoxide is produced significantly below market value by this solar thermal electrolytic process. The main product, lime, doesn’t react with the other byproducts, but instead forms a slurry at the bottom of the vessel where it can easily be removed.“This study presents a low-energy, entirely new synthetic route to form CaO without any carbon dioxide emission, and is based on unexpected solubility behavior in molten salts,” Licht said. “This synthesis can be accomplished without solar energy, and without our new STEP process, but is particularly attractive when combined with this new solar process. Alternatively, the new synthesis could be used by industry to produce cement using any non-solar renewable or nuclear energy without any CO2 release, or greatly decrease CO2 if fossil fuels were used to drive the new cement production (in the latter, worst-case scenario, the products are lime, graphite and oxygen; there is still no CO2 product, but CO2 would be used in the energy to drive the process).”According to the researchers, the STEP process can be performed at a lower projected cost than the existing cement industry process. In fact, when accounting for the value of the carbon monoxide byproduct, the cost of the lime production is actually negative. The researchers’ rough analysis shows that the total cost of the limestone material, solar heat, and electricity is $173 per ton of lime and 0.786 tons of carbon monoxide (0.786 tons of carbon monoxide are produced for every ton of lime). The market value of carbon monoxide is $600 per ton, or $471 per 0.786 tons. So after selling the carbon monoxide, the cost of the lime production is $173 – $471 = -$298 per ton. For comparison, the cost to produce lime in the conventional way is about $70 per ton. The researchers emphasize that this analysis is not comprehensive, but it indicates the cost benefit of STEP cement, not even considering the value of eliminating CO2 emissions.The scientists add that the STEP process could be extended beyond cement production to other applications that convert limestone to lime, such as purifying iron and aluminum; producing glass, paper, sugar, and agriculture; cleaning smoke stacks; softening water; and removing phosphates from sewage.The next challenge for the researchers lies in scaling up the process for commercialization. They note that Gemasolar, a large-scale solar thermal plant, is already in operation. Other solar thermal plants are following, with electricity costs expected to decrease. To maintain constant operation, molten salt storage of the thermal energy can allow production to continue even during fluctuations in sunlight and at night. Another issue may be finding enough lithium carbonate for the electrolyte, although the metal is not consumed in the STEP process and so is not a recurring cost.“We plan to scale up the outdoor STEP cement prototype, and in general want to increase the portfolio of useful chemicals made by our new solar process,” Licht said. “The goals are to replace today’s fossil fuel economy with a renewable chemical economy. Scale-up is the challenge. Although the process is entirely new, the individual components (solar towers, 24/7 operation storing solar energy with molten salts) are already in place. Solar energy can be used to efficiently make products without carbon dioxide, and at solar energy efficiencies higher than in photovoltaics.”center_img This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. © 2012 Phys.Org More information: Stuart Licht, et al. “STEP Cement: Solar Thermal Electrochemical Production of CaO without CO2 emission.” Chem. Commun., DOI: 10.1039/C2CC31341C (Phys.org) — While the largest contributor to anthropogenic greenhouse gas emissions is the power industry, the second largest is the more often overlooked cement industry, which accounts for 5-6% of all anthropogenic CO2 emissions. For every 10 kg of cement produced, the cement industry releases a full 9 kg of CO2. Since the world consumes about 3 trillion kg of cement annually, this sector has one of the highest potentials for CO2 emission reductions. But while processes are being explored to sequester the CO2 from cement production, so far no process can completely eliminate it.last_img read more